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A simple isothermal constitutional mechanism is proposed to explain the oscillatory compositional
zoning observed in many natural crystals. The model is based on the diffusion equation in an open sys-
tem and realistic crystal-growth kinetics. A phenomenological partitioning coefficient K is introduced to
relate the composition in the melt to the composition in the growing front. For concreteness, the model
is applied to the plagioclase feldspar system, a geologically important solid-solution series. Growth rates
are obtained from experimental growth data. A linear stability analysis of the model is presented. It is
seen that for K > 1 the steady state is stable. It is possible, however, to define an effective partitioning
coefficient which may be smaller than unity. In this case, the system may undergo a Hopf bifurcation
and develop an oscillatory behavior. Direct numerical solutions indicate that oscillatory and chaotic

zonings can indeed be obtained.

PACS number(s): 61.50.Cj, 05.70.Ln, 64.70.Dv, 05.45.+b

I. INTRODUCTION

In recent years, there has been much interest in pattern
formation at the interface of a growing crystal such as
dendritic, cellular, and skeletal textures [1]. A particular-
ly simple type of pattern consists in oscillatory textures
such as those occurring in many rapidly solidified alloys
[2] or in the explosive crystallization of amorphous layers
[3,4]. In these instances, the velocity of the growing front
is typically very high ( ~ cm/s or larger).

In contrast, oscillatory growth pattern may occur un-
der slow-solidification conditions for which the growth
velocity is much smaller (~um/s). The oscillatory zon-
ing observed in many plagioclase feldspar crystals found
in rocks of volcanic origin is one of the best known exam-
ples of such a pattern. Plagioclase minerals form a solid-
solution series between a sodium-rich member, albite
(Ab) NaAlSi;Oq, and a calcium-rich term, anorthite (An)
CaAl,Si,Og4. It has been known for a long time [5] that
plagioclase feldspar crystal faces often exhibit more or
less regular compositional variations as the distance
changes from the core of the crystal to its rim. The vari-
ations have been studied using microprobes, laser inter-
ferometry or reflected-light differential interference con-
trast techniques [6]. Typically, the composition varies by
5-15 mole % and the periodicity is between 10 and 100
pum. Superposed to these small-scale variations, irregular
and abrupt changes often occur. These abrupt variations
may be related to corresponding changes in the phy-
sicochemical environment of the cooling medium. How-
ever, it is believed that the small-scale regular variations
are the result of a self-organizing process inherent to the
solidification mechanism and to the rock-forming condi-
tions. Various other mineralogical systems also exhibit
oscillatory zoning. It has been observed in volcanic rocks
(augite [7] and olivine [8]), in metamorphic rocks [9], in
garnets [10], in calcite (CaCO;) grown from aqueous
solutions [11], and in experimentally grown (Ba,Sr)SO,
crystals [12].
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Various growth models have been proposed to explain
the origin of the oscillatory zoning in plagioclase feld-
spar. Brandeis, Jaupart, and Allegre [13] considered
temperature-induced oscillations. Their model is based
on a simplified one-dimensional heat equation with latent
heat release at the crystal front and Newtonian cooling.
A growth velocity which relaxes to the nonequilibrium
kinetic value with some delay time is also used. They
showed that solutions with an oscillatory character exist,
but there are damped and do not form a limit cycle. The
periodicity of the signal was also found to be of the order
of centimeters, which is much larger than the length scale
involved in oscillatory zoning. In fact, as the diffusion
coefficient of the component in the melt is typically much
smaller than the thermal diffusivity, it is believed that
these oscillations are diffusion induced. Allegre, Provost,
and Jaupart [14] considered a one-dimensional growth
model based on the diffusion equation and a relaxation
time between the actual growth velocity and its kinetic
value. Linearizing about a slowly varying solution, they
found an approximate transient solution which presents a
damped oscillatory character. Haase et al. and Ortoleva
[15] proposed a different model based on the diffusion
equation and an autocatalytic geochemical reaction
scheme with ad hoc assumptions for the rate constants.
A similar model has been recently used by Wang and
Merino [11] to explain the compositional variation of
trace elements in calcite. A chemical limit cycle behavior
is then obtained for the concentration. The basis for the
validity of the ad hoc assumptions is, however, physically
unclear. Lasaga [16] proposed a diffusion-based model
together with a phenomenological partitioning coefficient
K =c, /c relating the concentration of one component of
interest in the solid ¢, to its value ¢ in the melt at the
growing interface. He explicitly considered an equilibri-
um partitioning coefficient (which is larger than 1) and
performed a direct numerical integration of the model.
Using meaningful growth rate expressions, he did not find
any oscillatory solution.
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In this paper, a simple isothermal model is proposed to
explain the oscillatory zoning observed in a binary mix-
ture such as the plagioclase system. It is based on the
diffusion equation with reasonable expressions for the
growth rate. No relaxation time between the actual
growth rate and its nonequilibrium kinetic expression is
necessary, although it could easily be considered. The
model is similar to the one in Ref. [16], except that non-
equilibrium value of K are considered as well, with K < 1.
The possibility of a constant flow rate of material into
and out of the cooling reservoir is also considered. We
find that indeed limit cycle solutions do exist.

The physical origin of the oscillation is based upon the
constitutional undercooling mechanism [17]. Constitu-
tional undercooling occurs when the liquid in contact
with the growing solid front has a composition different
from its bulk value. This results in a concentration gra-
dient in the vicinity of the front. The liquidus tempera-
ture at the front is then different from the liquidus tem-
perature of the bulk equilibrium system. An effective iso-
thermal undercooling is therefore induced. This degree
of constitutional undercooling defines the intensity of the
growth rate. The relative magnitude between the
diffusion process and the growth in turn drives the
change in concentration at the interface, which affects
the degree of undercooling. The growth kinetics there-
fore provides the nonlinear feedback necessary for the ex-
istence of nontrivial asymptotic behavior.

More specifically, for the plagioclase feldspar system,
we will see that the growth velocity is a strong increasing
function of the melt interface concentration. This fact al-
lows us to clarify the physical mechanism for oscillation
in the following way. For K >1, crystal growth con-
sumes solute so that the melt concentration is lower at
the interface than far away from it. Suppose that a per-
turbation of the stationary concentration profile results in
an increase of the interface concentration. The growth
process will then proceed at a faster rate, thus leading to
an increase in the consumption of solute, so that the melt
interface concentration will have a tendency to decrease.
The growth kinetics and the diffusion process have there-
fore stabilizing effects on the perturbation. One expects
the stationary profile to be stable. For K <1, however,
the situation is different. In this case, growth rejects
more solute in the melt, so that the melt concentration is
higher at the interface than far away from it. A pertur-
bation of the stationary concentration profile which in-
creases the melt interface will result in a still faster
growth, which rejects more solute at the interface and in-
crease its concentration further. The growth has there-
fore a destabilizing effect on the perturbation. This in-
crease cannot go on forever, since at some point the con-
centration gradient will be so strong that the diffusion
process will dominate and generate a tendency to rein-
state the stationary profile. The same conclusion can be
drawn if the initial perturbation lowers the interface sta-
tionary value. We see that the potential for oscillation
and complex dynamical behaviors results from the fact
that the nonequilibrium feedback growth process occurs
at a faster rate as the interface concentration increases.
These qualitative observations are indeed confirmed by
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our quantitative analysis.

The paper is divided as follows. In Sec. II, the basic
equations defining the constitutional undercooling model
are introduced. In order to relate this model to a realistic
system, we specifically apply it to the plagioclase feldspar
case. Growth rate expressions are needed for this pur-
pose. In Sec. III, such semiempirical expressions are es-
tablished from the laboratory measurements of Kirkpa-
trick et al. [18]. In Sec. IV, a stability analysis of the
model is performed. The steady-state solution is first
found. A formal expression for the concentration of the
component of interest in the melt at the growing interface
is then established in the form of an integral equation. A
stability analysis is then performed. It is seen that for
K <1, the system undergoes a supercritical Hopf bifurca-
tion leading to the possibility of periodic asymptotic solu-
tions. In Sec. V, we show typical numerical solutions in-
dicating that periodic and chaotic solutions are indeed
obtained beyond the Hopf bifurcation. We finally present
some concluding remarks in Sec. VI. Two appendixes
complete the analysis.

II. BASIC EQUATIONS

Since the observed compositional zoning fronts are
often parallel, we consider here a simple one-dimensional
model describing the isothermal crystal growth from a
melt. We choose a frame of reference moving with the
growing front in such a way that the origin x =0 is fixed
at the front. The half-line x >0 corresponds to the melt.
The position coordinate of the growing front in the labo-
ratory frame is then x’=x+f(’)V(t')dt’, where V(1) is
the velocity of the front.

Let c(x,t) be the concentration (number of moles per
unit volume) of the component of interest in the melt.
We consider the possibility that the melt reservoir is an
open system with input feed of concentration ¢ far from
the growing front. In the absence of input feed, ¢ is sim-
ply interpreted as the bulk concentration in the melt far
from the growing front. The dynamical evolution of
c(x,t) is given by the diffusion equation

2

Oc _p e 1 pde e,

ot dx2 ox
where D is the diffusion coefficient of the component in
the melt. We neglect the concentration dependence of
this coefficient. The last term on the right-hand side of
Eq. (2.1) crudely describes the effect of the input feed. T'
corresponds to the input flow rate per unit volume and
can be interpreted as the inverse of the average residence
time of the component in the reservoir. This last term is
analogous to the Newtonian cooling term in the heat
equation.

The boundary condition far from the crystal-melt in-
terface is such that the concentration is equal to the input
feed concentration (or the bulk value in absence of input
feed):

(2.1)

c(o0,t)=0C . (2.2)

The boundary condition at the growing front is derived
from the continuity of the particle current at the inter-
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face:

poc

e (0,0)—c,(0,6)]V =0 .
dx 0

(2.3)
Here ¢,(0,¢) and ¢ (0,?) are the interface concentration of
the component in the crystal and in the melt, respective-
ly. We have neglected the diffusion in the solid phase. In
order to solve the diffusion equation, a relation between
¢,(0,1) and ¢ (0,¢) is needed. Although various phenome-
nological relations may be used [19], the simplest one is

established by introducing a constant partitioning
coefficient K [16]:
c,(0,t)=Kc(0,t) . (2.4)

This phenomenological relation is approximately valid
when c refers to the concentration of a trace component.
The boundary condition at the interface then becomes

poc

+c(0,6)(1—K)V=0.
dx 0

(2.5)

In the case where ¢ refers to a major component, other
phenomenological relations can be used [16]. For in-
stance, for a two-component system, the partitioning
coefficient can be interpreted in terms of an exchange
equilibrium constant K :

¢,(0,t)c’'(0,1)

Kp=——"7—"7"-—, (2.6)
b ¢ (0,2)c/(0,1)

where ¢,(0,2),¢'(0,¢) denote the interface concentration
of the other solid-solution component in the crystal and
in the melt, respectively. Using the mass balance equa-
tions to eliminate ¢'(0,¢) and ¢,(0,¢), it can be shown [16]
that

K Bc(0,1)
A+(Kp—1)c(0,1)

c,(0,t)= (2.7

where A,B are approximately constant. If the concentra-
tion ¢ (0,¢) does not change very much in time, one can
still define [16] an effective partitioning coefficient

KpB

K=&, 0.0y

(2.8)

where {c(0,¢)) denotes the time average of the concen-
tration. One then approximately recovers the boundary
condition (2.4).

Finally, we choose the initial condition to be such that
the concentration is equal to the input feed concentration
(or its bulk value in absence of feed):

c(x,0)=¢ . (2.9)

In order to complete the description of the model, we
need to specify the speed of the growing front. This pro-
vides the nonlinear coupling necessary to gener?te self-
oscillatory solutions. As the growing process is typically
slow, we assume that the speed of the growing front re-
laxes instantaneously to its value Gr(c(0,t)) defined by
growth kinetic models at temperature T:
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V(£)=G(c(0,1)) . (2.10)

Equations (2.1)-(2.4), (2.9), and (2.10) define the model
considered here. The control parameters are then D, T,
T, ¢, and K.

III. GROWTH RATE

In order to apply the model to a realistic natural sys-
tem, we need to find an explicit expression for the growth
rate Gy. For concreteness, we choose the plagioclase
feldspar Ab-An system as example. Indeed, since it con-
stitutes a system of prime importance in geological condi-
tions, its thermodynamics and growth rate kinetics have
been carefully studied [18,20,21]. In this section, we pro-
pose to derive semiempirical expressions for the growth
rate of plagioclase feldspar based on the laboratory mea-
surements of Kirkpatrick et al. [18]. Our approach is
similar to the one used elsewhere [16,22], but does not
necessitate the use of viscosity data.

We have found that a good fit to the data is given by
the Calvert-Uhlmann model [23] for the growth of large
crystals. This model expresses the overall growth rate as
a geometric average of two processes: a longitudinal
growth R by surface nucleation and a continuous
growth R, responsible for the lateral spread of the crys-
tal:

Gr=U(RgRI)'?, 3.1
where
Rg=exp(—3a/TAT)exp[ —b/(T—T,)], (3.2)
Rc=[1—exp(—AG/RT)]exp[ —b/(T—T,)] . (3.3)

Here U is a velocity scale, a depends on the surface ten-
sion of the two-dimensional nuclei generating the longitu-
dinal growth, and b is proportional to the activation
enthalpy for the transport of atomic movement through
the liquid and across the interface and is related to the
viscosity of the melt. AT is the undercooling

AT=T,-T, (3.4)
where T is the equilibrium liquidus temperature. T, in
the term exp[ —b /(T —T,)] denotes the glass transition
temperature. A slightly better fit was obtained with this
term rather than the more conventional one exp(—b/T),
reflecting the validity of the Vogel-Tammann-Fulcher
empirical relation [24] describing the temperature depen-
dence of the viscosity in many liquids. In Eq. (3.3), R is
the ideal gas constant and AG >0 denotes the molar
Gibbs free-energy difference between the crystal and the
liquid. For not too large undercooling, this quantity is

conventionally related to AT through the relation
AG=AHAT/T; , (3.5)

where AH is the enthalpy difference between the crystal
and the liquid. This quantity in turn can be expressed as

AH=AH,+AH,, , (3.6)

where the first term on the right-hand side represents the
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molar enthalpy of fusion and the second term the molar
enthalpy of mixing.

A relation between the growth velocity and the con-
centration is needed. Using the empirical data of Ref.
[18], we have fitted the three parameters InU,a, b to quad-
ratic polynomials in X, the An composition (mole frac-
tion) in the melt:

2

InUX)=3 u, X", (3.7)
n=0
2
a(X)=3 a,X", (3.8)
n=0
2
b(X)=T b,X". (3.9)

n=0

Table I gives the list of coefficients u,,a,,b,. We adopt
Lasaga’s fitting polynomial [16] for the liquidus curve T
(in K):

T,=1392.5+ 1610.01X —3219.3X?
+3235.2X3—1187.6X* . (3.10)

The glass transition temperature (in K) is taken from [20]
T,=1085X +(1—X)1018 . (3.11)

Using Ref. [20], we take the enthalpies of fusion and mix-
ing (in cal/mole) to be:

_ 15.01X10°
AH;=23.99T; —6.95X 10T} — I, —3224 ,
(3.12)
AH,, =—X(1—X)(6667—15X +3893X2) . (3.13)

Finally, the relation between the concentration c(0,¢)
of An and the composition X in the melt at the interface
is

X

, 3.14
VanX +(1—X)v 5, 614

c(0,t)=

©

0 ®) i

log , V ( 10° m/s)
@
I
1

@

-5 1 1 1 1

0 0.2 0.4 0.6 0.8 1
C

FIG. 1. Behavior of the growth velocity V=G with ¢, the
An concentration in units of inverse molar volume for various
temperatures. (a) 7=1200 K; (b) T=1400 K; (c) T=1600 K;
(d) T=1800 K.
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FIG. 2. Comparison of the calculated growth velocity curves
and the empirical data of Ref. [18] for various An melt concen-
trations: ¢ = 1.0 (circles); ¢ =0.75 (squares); ¢ =0.50 (triangles).

where v,,,U,, are the molar volume of An and Ab, re-
spectively. It turns out that these two molar volumes are
nearly equal (v,,=100.79 cm?®/mole, wv,,=100.07
cm?®/mole), so that, to a good approximation,

c(0,)=X/v,, . (3.15)

Measuring the concentration of An in units of inverse
molar volume, we see that the composition X gives
directly the concentration c (0, ?).

Equations (3.1)-(3.13) and (3.15) define in our model
the growth velocity G as a function of ¢ at temperature
T. Figure 1 shows the behavior of the growth velocity as
a function of the concentration for various temperatures.
In Fig. 2, the growth velocity curves are compared with
the empirical data of Kirkpatrick et al. [18]. The fits are
reasonably good for a large range of temperatures and
concentrations. It should be noted that the low-
concentration data (X =0.20) of Kirkpatrick et al. are
significantly different from the theoretical prediction. In
view of the fact that the corresponding sample was treat-
ed differently from the others [22], these data were in fact
not considered when obtaining the fitting parameters of
Table I. Recent measurements of growth velocity at low
An concentrations [22] are indeed consistent with our
theoretical curves.

It turns out that the main terms defining the shape of
the growth curve as a function of ¢ are the velocity scale
dependence U (X) and the liquidus temperature T (X).
The growth curves depends only slightly on the other
terms a (X), b (X), T,(X), AH((X), and AH,, (X).

TABLE 1. Coefficients of the polynomials defined in Egs.
(3.7)-(3.9) as determined from the data of Kirkpatrick et al.
[18]. In (3.7)-(3.9), U is measured in cm/min, a is in K?, and b
in K.

n u, a, b,

0 —4.0204 1225890 1099.6
1 7.1197 —3509 543 2193
2 0 2566582 —2114.3
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IV. LINEAR ANALYSIS

A. Steady-state solution

The steady-state solution of the model can be obtained
by setting the left-hand side of Eq. (2.1) equal to 0. The
growth rate is then constant V=V, The time-
independent solution of Eq. (2.1) satisfying the boundary
conditions (2.2) and (2.5) is then

2(1—K)
=2 |1+ =2o—""exp[ — 2D
colx)=2¢ 1+2K_1+aexp[ Vo(l+a)x /2D] | ,
4.1)
where
a= |1+20D 4.2)
Vo

The melt steady-state concentration at the interface
cog=cy(x =0) is then
=2 (1+a)
O "2K+a—1"
The relation between the steady-state growth rate ¥, and
¢, is consequently

4.3)

1 T T
0 ? _ - g (@ -
—_ <0 L
2 -7 K=1.5
g -1 | n
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— _2 - // n ‘q — c\' —
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FIG. 3. Plots of the relationship between the steady-state
growth velocity and the steady-state concentration according to
Eq. (4.4), for various ¢. The growth velocity curve of Fig. 1 for
T=1400 K is superposed to the plots. (a) K=1.5; (b) K =0.55.
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2 172
—1 ] , (4.4)

where the quantity in square brackets is restricted to be
positive. In the absence of input feed (I'=0) the solution
reduces to ¢, =¢ /K, in agreement with the solution of
the constant velocity problem obtained by Smith, Tiller,
and Rutter [25].

In the following, we can choose the diffusion coefficient
D of the various elements in a typical silicate melt be-
tween 10! and 107! m?/s. The value of T, the inverse
average residence time, may be estimated [26] at 10~ !!
s~ ! Finally, although the partitioning coefficient K has
an equilibrium value that is larger than 1, it is possible
[19,27] to consider an effective K that is smaller than 1 in
view of the approximate interpretation given by Eq. (2.8).

The function (4.4) is plotted in Fig. 3 for various values
of ¢. A typical (T'=1400 K) growth rate curve V=G is
superposed showing the position of the steady-state solu-
tion. In most cases, the steady state solution is unique.
However, for K <1 it is possible to find values of T and ¢
for which there exist up to three different steady states
for a small range of parameter values.

(1—K)e

cp—7C

Vo=2VTD | [1—2K +2

B. Time-dependent solution

In this section, we obtain the formal solution c(x,?) of
the time-dependent problem, given V' (¢). An expression
for the concentration ¢ at the interface is then derived.
We first take the spatial Laplace transform of Eq. (2.1)
and take the boundary conditions (2.2) and (2.5) and the
initial condition (2.9) into account. We get

%Z—[V(t)K+sD]c(0,t)+[52D—i—sV(t)—F]E-i—I"E/s ,
(4.5)
where C(s,t)= fg’c (x,t)exp( —sx)dx is the Laplace trans-

form. The solution is then

=£expp(t,0)

c(s,t)
—f dt'c(0,2')[sD+KV(t')]expp(t,t’)
+[ ‘¢ expp(t,t'), 4.6)
0 s
where the propagator is
p(t,t")=sD(t—t")+sf(t')—T(t—1') 4.7)
and
fun= [vanar 4.8)
v

is the length of the crystal growth between times ¢’ and t.
Performing a Laplace inversion finally gives the time- and
space-dependent concentration. We obtain after some

algebra
(x, t)—c—fdt 580 xz—+f§,t—)—2V(t’)
+f dr’ 02”
xg, ox) | 2L ogpan |, @9
b t—t’'
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where

exp |—I(¢

oy [xHranp
4D(t—1t')

[47D (t—1t')]'?

The concentration at the interface is given by taking the
limit x —0. However, a careful asymptotic analysis is
needed as this limit is not well defined when #—¢' in the
integral. An outline of the analysis is found in Appendix
A. We finally obtain

g r(x)= (4.10)

c=c(0,n=¢— [dr'eg, (0) Tf(_’—;,)—zm')

+f0tdt’c(t')g,,,,(0)

) 1413
t—t

4.11)

It is easily verified that taking the large time limit of this
solution and setting c(¢’) constant, one recovers the
steady-state solution (4.3).

C. Stability analysis

We now investigate the linear stability of the steady-
state solution obtained in Sec. IV B by considering the
time behavior of a small perturbation of ¥V and ¢ about
the steady state. As usual, we let a solution of the form

20t /7,

c=cytee , (4.12)

2wt /T,

V="V,+eV'e , (4.13)

where € is the amplitude of the small perturbation and V"’
is the derivative of the growth curve with respect to ¢
evaluated at the steady state. Here, 7,, is a natural time
scale

m

_ 8D
me Vg(::t2 ’

T (4.14)

with a defined in Eq. (4.2) and w is the dimensionless ei-
genvalue of the linearized problem.

The stability analysis is similar to the one considered
by Van Saarloos and Weeks [3] and is outlined in Appen-
dix B. We find that the eigenvalue » obeys the relation

Vori=22=F

w—P (4.15)
where
P=_49(_?:i)(_1_—m , (4.16)
a‘(a—1+2K)
_1—-2K (a+1)(1—K)
Q a ala—1+2K) ° @17
Here
o=cV'/V, (4.18)

is the dimensionless slope of the growth curve at the
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steady state and is positive for the An-Ab system. The
solution of (4.15) is also a solution of

0*+o(1—2P—Q?)+(P2—2P+20QP)=0 (4.19)

so that the stability analysis is straightforward. The two
solutions w of (4.19) are

0r=—L1=2P—Q)EL|Q—1|V(1+Q)*+4P . (4.20)

However, it must be verified that the solutions w, of
(4.19) indeed solve (4.15).

For K > 1, it is seen that P >0 since 8> 0. In this case,
the roots w. are both real.” For these roots to be a solu-
tion of (4.15), it is required that the right-hand side of
(4.15) be positive, which simplifies to

—1[1—Q+V(1+Q)*+4P]>0 . 4.21)

Since Q <0 for K > 1, it is seen that w, is never a solu-
tion of (4.15) while o _ exists for 1—Q >V (1+Q)*+4P,
which is equivalent to

a(2K —1)a—1+2K)
22—a)a+1)K—1) °

It is also easy to verify that in this domain of existence,
w_ is always <O, so that the steady-state solution is
stable.

For K <1, the situation is different for then P <0 and
Q may be positive. The case where w, are real
[(1+Q)*+4P>0] is first considered. For the sake of ar-
gument, we examine the range 1 <K <1. When Q <1,
we find the same result as for the case K > 1: w_ is not a
solution of (4.15) while w_ solves it when the inequality
(4.22) is obeyed. w_ is also negative in this domain so
that the steady state is stable. When Q>1 [and
(1+Q)?+4P>0], it is found from (4.21) that w4 is al-
ways a solution of (4.15) while w_ has this property when

a(2K —1)(a—1+2K)

O —aatDE—1) - 23
The sign of w, and the stability of the steady state de-
pends on the relative magnitude of the two terms in the
right-hand side of Eq. (4.20). Similar observations apply
when K < 1, except that the inequality sign is reversed in
(4.22) and (4.23).

The most interesting case occurs for (1+Q)?>+4P <0
since the roots w, becomes complex. In this case, both
4 are solution of (4.15) when Q > 1. This last condition
is equivalent to

_(@—1+2K)*
2a+1)(1—K) °

The sign of Re(w..) determines the nature and the stabili-
ty of the steady state. When 1—2P—Q?>0 the steady
state is stable and the approach to it has an oscillatory
behavior. However, for 1—2P—Q2<0, the steady state
is unstable and the system exhibits a supercritical Hopf
bifurcation at the critical line

1—2P—Q%*=0, 0>1
(1+Q)?+4P <0 .

0> (4.22)

0> (4.24)

(4.25)
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FIG. 4. Phase diagram exhibiting the behavior of the steady
state according to a linear stability analysis for K =0.55. The
parameters (6,/3) are defined in Eqgs. (4.18) and (4.26). In regions
A and B, Imw4 >0 with Rew+ <0 (region 4) and Rew4 >0 (re-
gion B). In the other regions, the eigenvalues (when they exist)
are real. C, w+>0; D, w4+ >0and w_ <0; E, @, >0 is the only
root of (4.15); F, w4 <0 is the only root of (4.15); G, w4 <0; H,
w_ <0 is the only root of (4.15); I, no solution for (4.15).

A self-oscillatory solution is then possible beyond the bi-
furcation.

In Fig. 4, a complete typical stability diagram is illus-
trated for K <1. This phase diagram is shown in terms
of the dimensionless slope of the growth curve 6 and a
parameter related to the inverse average residence time

B=1/a*=1/(1+4TD/V}) , (4.26)

with 0 <8=1. The region where w. complex solve (4.15)
with Re(w, ) >0 is rather small, but, as we will see in the
next section, it is accessible in realistic conditions.

V. NUMERICAL SOLUTION

In order to verify the findings of the preceding section
and to investigate the nature of the linearly unstable solu-
tions, a direct numerical solution of the evolution equa-
tion (2.1) was obtained.

We rewrite Eq. (2.1) in nondimensional form by scaling
distance by D /V, and time by D /V3. The velocity scale
is then V;. We discretize the space and time variables us-
ing a fixed space and time steps Ax and At on staggered
grids x =jAx,t=nAt. The dimension M of the spatial
grid is chosen large enough (in practice MAx=5). A
semi-implicit scheme is adopted for the time evolution
and centered differences are used to approximate the spa-
tial derivatives. The discretized version of the evolution
equation (2.1) and of the boundary conditions transform
the differential equation into a nonlinear matrix equation
of the form

AlcithHer P l=B(C") , (5.1)

where the jth element of C" is the concentration c;' at

time n and space label j, A is an M XM matrix, and B is

IVAN ’HEUREUX 48

a column vector. The nonlinear dependence of A on
c8*lis due to the coupling of the concentration field to
the velocity of the growing front. The inversion of (5.1) is
performed by starting from an initial guess for C"*! in
A and inverting. Let R;=3; Aijcj"“—Bi be the resi-
due. The inversion is iterated until the quantity
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S (R))?

-4
n+1,2
DILCHAN
j
is smaller than a tolerance 8. In order to exercise a better

control on the speed of convergence [28], a relaxation
factor y is introduced:

Cn+l,i+1:,},cn+l,i+l+(l_y)cn-kl,i’ (52)

where i denotes the iteration index. The numerical algo-
rithm was checked for convergence and stability. As a
further verification, the numerical solution for the linear
problem V=const and I'=0 agreed with the known
analytical solution [25]:

2

=_° VvV 2

c 2K(lﬂ-erf( V<t /4D)
_(1_2K)e~K(1—K)V2t/D

X {1+erf[(1—2K)V'V?t/4D1}) .  (5.3)

Figure 5 gives typical plots of the concentration of An
in the solid ¢,(#)=Kc(¢) as a function of the distance
x=f(’)V(t')dt' from the core of the crystal for various
parameter values. In practice, we chose Ax=0.05,
At=0.005, M =100, §=1.0X107%, and y =0.5.

Figure 5(a) corresponds to K >1. The solution ap-
proaches the (stable) steady state without oscillation, in
accordance with the stability analysis of Sec. IV.

In Figs. 5(b)-5(d), the partitioning constant is chosen
smaller than 1 and ¢ is varied. The plot of Fig. 5(b) corre-
sponds to a point in region A of the phase diagram of
Fig. 4. As expected from the stability analysis, the solu-
tion has an oscillatory character and approaches the
stable steady state.

Figures 5(c) and 5(d) correspond to points in region B
of the phase diagram, where the steady state is unstable
and the eigenvalues of the linearized problem possess a
nonzero imaginary part. In Fig. 5(c), the system is locat-
ed just beyond the Hopf bifurcation where a periodic
solution is expected. This is indeed the case. The dis-
tance between the peaks in the signal is 5.41D/V,. In
view of the fact that V| is insensitive to the value of D in
the range of interest, this spatial periodicity corresponds
to 47-470 um for D=10"11-10710 m?/s, respectively.
This value is consistent with typical observations of com-
positional zoning in natural plagioclases, particularly for
the lower values of D.

Finally, in Fig. 5(d) the parameter ¢ is further increased
with respect to the value in Fig. 5(c). However, the sys-
tem is still in region B of Fig. 4. The numerical algo-
rithm shows that the solution has developed an irregular
chaotic character.



48 OSCILLATORY ZONING IN CRYSTAL GROWTH: A ...

Because of the small magnitude of I', the fact that the
system is open has little effect on the solution curves of
Fig. 5: for all these, B=1/(1+4T'D /V3) is very close to
1. Tt is only for small values of ¢ that the system typically
moves towards the lower right corner of the phase dia-
gram of Fig. 4. For such values of the parameters, the
steady state is unstable, but the numerical solution indi-
cated that the system quickly stops growing [V (¢)—0].
It should be noted that in many instances, the peak
values of the numerically obtained melt concentration
was sometimes slightly higher than 1 [this is not the case
for Fig. 5(c)]. This is not surprising in view of the fact
that there are no terms in the expression for the growth
rate which formally constraint ¢ to be less than 1. This
problem should not arise with a more exact expression
for the growth rate.

VI. CONCLUSION

In this paper, we have studied a simple isothermal con-
stitutional undercooling model giving the concentration

T T I I
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X
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of one component of a two-species binary mixture at the
position of the crystallization front. The model is based
on the conservation of mass (diffusion equation) together
with reasonable growth kinetics. The possibility of a con-
tinuous flow of matter with the outside was also con-
sidered by introducing an inverse average residence time
I". The model has been applied to a geologically impor-
tant natural system known to exhibit in many instances a
complex or oscillatory compositional zoning: the
anorthite-albite solid solution series.

A complete linear stability analysis of the steady state
has been presented. It has been shown that when the
effective or equilibrium partitioning coefficient is larger
than unity, the steady state is stable. This fact explains
why Lasaga [16] was not able to obtain oscillatory nu-
merical solutions. However, when the effective partition-
ing coefficient is smaller than unity, there exist regions in
the control parameters space for which the steady state is
unstable and develops an oscillatory character.

Direct numerical solutions have been obtained and we
indeed established the presence of self-oscillatory solution

0.3

0.26

0.22

0.14

0.7

(d)
0.55 | L

0.25 -

0.1 . L

0 50 100 150
X

FIG. 5. Numerical solution of the concentration of An in the crystal at the growing front as a function of the distance from the
core x = f;V(t')dt' (in units of D/V,). The parameters are D =107 m?*/s, T=10""" 57!, and T=1400 K. (a) K=1.5,¢=0.5
(V=0.1107 um/s, initial undercooling AT=322.8 K); (b) K=0.55, 2=0.25 (¥, =0.3411 um/s, initial undercooling AT =239.7
K); (c) K=0.55, 2=0.33 (V,=1.1577 um/s, initial undercooling AT=275.4 K); (d) K =0.55, 2=0.415 (V;=4.3133 pm/s, initial

undercooling AT =302.2 K).
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with a periodicity compatible with the observations. Ir-
regular (chaotic) solutions were also obtained by varying
the bulk concentration ¢, thereby increasing the initial
undercooling. In contrast to the explosive crystallization
problem [3], no clear period doubling cascade was found.
The transition from an oscillatory solution to chaos needs
to be further investigated. Because the value of the in-
verse average residence time I' in the system in con-
sideration is small, its effect was seen to be negligible.
Consequently, our observations apply for a closed system
as well.

Generalizations of our basic model to reflect more real-
istic conditions are currently under investigation. For in-
stance, the more appropriate boundary condition (2.7)
should be considered instead of (2.4). The case of an
equilibrium concentration-dependent partitioning
coefficient K (c) as defined by the ratio of the solidus and
the liquidus curves could also be investigated. Also, an
explicit time dependence in the temperature of the reser-
voir or in the bulk concentration ¢ could be considered.
When these parametric variations are sufficiently slow,
one expects a drift of the steady-state concentration in
time. This could translate into a drift of the extrema of
the oscillatory signal. This drift is in fact observed in
many instances of natural plagioclases [6].

A relaxation time 7 between the actual growth rate
and its nonequilibrium kinetic value G may also be con-
sidered as in previous models [13,14]. Specifically, the
growth rate relation (2.10) is replaced by

v
T——+V=Gr .
dt T
The stability eigenvalue equation (4.15) is then replaced
by

(6.1

— aT,

Veotl=

m

o—P+2T7,,'0?

(6.2)

A detailed analysis is beyond the scope of this paper.
Nevertheless, it can be verified that no complex eigenval-
ues with positive real part were found for K > 1, indicat-
ing that the presence of the relaxation time 7 is not
sufficient to induce a limit cycle behavior. In agreement
with the findings of Allegre, Provost, and Jaupart [14],
the steady state is stable, although damped oscillations
are possible.

In many open complex systems, uncontrollable fluctua-
tions of the environmental factors may be modeled as a
random variation of the external parameters D,I", 7,¢,K.
The stochastic character of the dynamical system may
lead to a large variety of nontrivial behaviors [29]. The
question of such noise-induced transitions in our model is
a relevant one and is presently under study.

In conclusion, our simple model can qualitatively ex-
plain with few assumptions the compositional zoning
profile observed in various natural systems. An under-
standing of the mechanism generating oscillatory zoning
allows us to clarify the circumstances in which many
crystals in nature have been formed and to get relevant
information on the rock-forming conditions.
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Note added in proof. The expression (3.10) for the heat
of fusion pertains to pure Ab extrapolated on the liquidus
curve. One may argue that more reasonable expressions
for AH ; should be used, such as an average of the heat of
fusion of pure An and pure Ab weighted by the composi-
tion. However, the growth curves are not sensitive to the
particular value of AH, chosen within reasonable
bounds. In fact, using such a new expression for AH,
leads to results which are essentially identical.
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APPENDIX A

In this appendix, the asymptotic evaluation of the limit
x —0 in Eq. (4.9) is outlined, leading to Eq. (4.11). This
evaluation is inspired from a similar calculation of Lasa-
ga, Richardson, and Holland [30]. In the time integrals
of Eq. (4.9), we change variables to u =1/[2(t—¢")!/?].
The integration limits are changed from (0,7) to
[1/(2V't ), ]. The argument of the exponential in
the integrals become —(u?/D){x+f[t—1/(4u?)]}?
—T'/(4u?). An auxiliary large parameter v is chosen
1/(2V't )<v < w0, thus splitting the integrals into two
parts.

In the first part of the integrals 1/(2Vt ) <u <v, one
can set x =0 in the integrand. Transforming back to the
original time variable ¢’, this first part of the integrals be-
comes a time integral from O to t—(1/4v?) of the in-
tegrand function evaluated at x =0. Finally, since v is
large, the term 1/(4v?) may be neglected compared to ¢
in the upper limit.

In the second part of the integrals, the limits are
v<u <. Since v is large, u is also large (i.e., ¢ is close
to t'). The function f(¢) is then arbitrary close to zero.
We neglect f(¢) compared to x. Taking the limit of large
u, it is easy to see that the second part of the integrals
reduce to

e—c(t) = 2,2
— du xe **/P=[c(t)—2]/2 .
V'wD fy [ ]
The equality results from taking the limit x —O after the

integral is evaluated. Collecting the result, we finally ob-
tain Eq. (4.11).

APPENDIX B

In this appendix, we outline the derivation of the eigen-
value equation (4.15) starting from the ansatz (4.12) and
(4.13). The approach is similar to the one used by Van
Saarloos and Weeks [3]. In Eq. (4.11), it is convenient to
introduce 7=t —¢'. Changing the variable of integration
from 7 to f defined in (4.8), one can write Eq. (4.11) as
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cty=e+e [t o-rrsiine

V4rDr
_ L . _ af —Tr—f2/4Dr
2Kf0 c(t—r) Vv vid
L f
+ | d t—71)—70 —
fO Slet=m)—2] TV(t—71)WVarDr
X e Tr—r?/4Dr (B1)

Here L =f(0) is the total length of the crystal. 7(f,t) is
then implicitly given by the definition (4.8) of f:

fia—n=[" v (B2)

t
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We define 7, by f(t —71)=7,V,. Substituting (4.13) into
(B2), one finds the first-order correction 67 due to the
perturbation:

ev'r,
20V,

2wt /71, —2wf/V,T,

dr=r—Ty=— (1—e o). (B3)
Substituting (4.12) and (4.13) into (B1) and linearizing
with respect to €, the integrals in Eq. (B1) can easily be
performed. Taking into account the value (4.3) of ¢, we
finally obtain after some algebra the eigenvalue equation

—_— —P
Vori=22
@ o—P ’

with P and Q defined in (4.16) and (4.17).
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